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Efficient synthesis of polyfunctionalised enantiopure
diazepanone scaffolds
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Abstract—The synthesis of polyfunctionalised enantiopure 1,4-diazepan-3-one scaffolds from LL-serine derivatives and azidoepoxides
readily available from either LL-ascorbic or DD-isoascorbic acid, allowing access to various configurations at chiral centres, is
described. The key steps are the nucleophilic opening of the epoxide by the amine of serine followed by a lactonisation–lactamisation
sequence.
� 2007 Elsevier Ltd. All rights reserved.
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In the context of an ongoing programme directed to the
synthesis and biological evaluation of new potential
antibacterial, we are aiming at developing efficient and
flexible routes to versatile scaffolds allowing access to
libraries of compounds. Indeed, the design of scaffolds1

is often the most suitable plan to reach large families of
compounds because it can take advantage of multiple
functional groups which facilitate the further introduc-
tion of pharmacophoric groups. Furthermore, scaffolds
generally display cyclic structures that reduce the entro-
pic cost associated with the loss of conformational
degrees of freedom upon binding to the target protein
and finally they may allow solid phase synthesis. Our
goal is the inhibition of the bacterial translocase MraY,
which catalyses the first membrane step of peptido-
glycan biosynthesis.2 Indeed, this essential enzyme3 rep-
resents a target of prime interest when searching for new
antibiotics because it has been shown that the inhibition
of any enzyme involved in peptidoglycan biosynthesis
leads to bacterial lysis and furthermore this enzyme is
currently the target of no drugs used in therapeutics.
The transmembrane localisation of that enzyme,4 mak-
ing it difficult to purify and to study, is responsible for
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the limited interest dedicated to MarY for a long time.
Nevertheless, this enzyme has now been recently purified
to homogeneity5 and tests allowing high-throughput
screening of inhibitors have been developed.6 Our goal
is to achieve the synthesis of a library of inhibitors
displaying analogous and simplified structures as com-
pared to liposidomycins7 (Fig. 1) which are naturally
occurring inhibitors of MraY. However, probably due
to the high hydrophilicity of these compounds, although
they are powerful inhibitors of MraY, their antibacterial
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Figure 1. Structure of liposidomycins and of the target scaffold.
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activity is weak. Consequently, crucial objective of the
project will be to adjust the physico-chemical properties
of the synthesised inhibitors to promote their passive
diffusion through membranes barriers. The structure of
the target scaffold (Fig. 1), retaining the central core of
liposidomycins, is a 1,4-diazepan-3-one with various
well-differentiated functions such as primary and
secondary alcohols and amine.8 It has to be noted that
this structure has not been exploited yet for MraY inhibi-
tion, so that the proposed inhibitors will display original
structures as compared to those existing.9 A special
attention has been paid to the introduction of orthogo-
nal protections on the various functions, thus allowing
further sequential deprotection and introduction of
key structural fragments required for biological activity.
Finally, the accessibility to several configurations at
chiral centres of the scaffold should increase the diversity
of the future library.

Retrosynthetic analysis towards the target compound 1
(Fig. 1) involves two key steps which are the regiospec-
ific nucleophilic opening of an enantiomerically pure
azido epoxide by the amine of a conveniently protected
LL-serine derivative10 and a peptidic coupling involving
the amine, resulting from azide reduction, and the
carboxylic acid of the serine. According to this plan,
the preparation of two serine derivatives with either a
primary or a secondary amine function has been carried
out from commercially available O-benzyl-N-Fmoc-LL-
serine 3 (Scheme 1). On one hand, esterification with
tert-butyl trichloroacetimidate followed by N-Fmoc
deprotection in the presence of 20% piperidine afforded
the tert-butyl O-benzyl LL-serine 2a in quantitative over-
all yield. On the other hand, according to Freidinger
method,11 serine 3 was condensed with p-formaldehyde
a b
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Scheme 1. Reagents and conditions: (a) Cl3CC(NH)OtBu, cyclohex-
ane, CH2Cl2, 100% for 4; (b) piperidine, rt, 100% for 2a, 83% overall
yield from 5; (c) (CH2O)n, p-toluenesulfonic acid, toluene reflux, 97%;
(d) Et3SiH, TFA, CHCl3, rt.
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Scheme 2. Reagents and conditions: (a) LiAlH4, THF, rt then reflux 2 h, 9
lutidine, CH2Cl2, �78 �C; (ii) NaN3, DMF, 0 �C to rt, 89%; (d) TFA/H2O
CH3C(OCH3)3, PPTS, CH2Cl2, rt; (ii) AcBr, Et3N, 0 �C to rt; (iii) K2CO3, M
in the presence of p-toluenesulfonic acid in refluxing
toluene to give oxazolidinone 5. Then acid-catalysed
reductive alkylation led to the corresponding amino acid
which was then submitted to esterification and N-Fmoc
deprotection as previously described to afford 2b.

The preparation of azido epoxides 1a and 1b (Scheme 2)
was, respectively, performed from ethyl 1,2-O-methyl-
ethylidene LL-threonate and DD-erythronate readily
obtained from LL-ascorbic and DD-isoascorbic acids
according to known routes.12 LiAlH4 reduction of the
esters was followed by selective protection of the result-
ing primary alcohol with tert-butyldimethylsilyl chloride
followed by the activation of the secondary alcohol
function as the corresponding triflate and nucleophilic
substitution with excess sodium azide affording the
azido derivatives 6a13 and 6b. Acidic hydrolysis in the
presence of trifluoroacetic acid in H2O/THF was
followed by epoxidation under Sharpless conditions14

affording epoxides 1a and 1b in good yields.

With both synthons in hands, we next turned to the first
key step (Scheme 3) which involved nucleophilic open-
ing of the azido epoxide 1a with either the tert-butyl
O-benzyl LL-serine 2a or its N-methyl analog 2b in the
presence of ytterbium triflate in dichloromethane lead-
ing to 7 or 8, respectively, in 65–70% yield.15 Alter-
natively, to reach another configuration at carbon C5

of the target scaffold, the same reaction involving the
O

O N3

OTBDPS

6a

6b

d, e

N3

OTBDPS

O

1a

1b

O

O N3

OTBDPS

N3

OTBDPS

O

8%; (b) TBDPSCl, imidazole, DMF, �10 �C, 97%; (c) (i) Tf2O, 2,6-
/THF, 0 �C to rt, 75% and 70%, respectively, from 6a and 6b; (e) (i)

eOH, rt, 87% overall yield.
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Scheme 3. Reagents and conditions: (a) Yb(OTf)3, CH2Cl2, rt, up to a
week (see Ref. 15), 65–70%.
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Scheme 4. Reagents and conditions: (a) (Ph2PCH2)2, THF, H2O, rt, 85% for 10 and 70% for 11; (b) TFA, CH2Cl2, rt; (c) HATU/HOBt in excess,
DIPEA, DMF, rt, 30% overall yield from 13.
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diastereoisomeric epoxide 1b and N-methyl amine 2b
was carried out and led to compound 9 in similar yield.

For prior testing of the peptidic coupling reaction,
chemical modifications of the molecules were required
Figure 2. Modelisation of aminoacid 12 showing hydrophobic inter-
actions between aromatic rings and hydrogen bond between –NH– and
–OBn.
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Scheme 5. Reagents and conditions: (a) TFA, CH2Cl2, rt, 80%; (b) HCOO�
(Scheme 4). Thus, reduction of the azido group of 7 or
8, respectively, under Staudinger conditions in the
presence of 1,2-bis(diphenylphosphino)ethane in THF
followed by H2O addition afforded the corresponding
amine 10 or 11, respectively, and was followed by subse-
quent acidolysis of tert-butyl ester in the presence of tri-
fluoroacetic acid in dichloromethane to give 12 and 13
which were used without further purification. We next
turned to the lactame formation which was first assayed
on derivative 12. Various conditions were tried and
notably involved EDCI/HOBt in CH2Cl2 as coupling
agents but revealed unsuccessful for this cyclisation.
Indeed, modelisation (Fig. 2) of compound 12 was
performed with calculations being run on a Silicon
Graphics computer using the Biosym software IN-
SIGHT II and DISCOVER with the CVFF force field
from Dauber-Osguthorpe anf Hagler.16 It showed
hydrophobic interactions between aromatic rings of
the TBDPS and the benzyl O-protecting groups leading
to a distorted conformation of the molecule. Further-
more, several hydrogen bonds, in particular between
the secondary amine and the oxygen atom of the OBn
residue, remove the protagonists of the reaction, pri-
mary amine and carboxylic acid, to a distance of 6 Å
from each other, probably avoiding the cyclisation.

Finally, in order to limit possible hydrogen bonds within
the molecule, further assays were run on the N-methyl
derivative 13 and we showed that the best conditions
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for performing the cyclisation in lactam ring were
HATU/HOBt in excess with diisopropylethylamine in
DMF. Indeed, these conditions allowed the obtention
of the expected diazepanone 15, although in a modest
30% yield. Obviously, further goal was to improve the
yield of the diazepanone formation and that was finely
done by inverting the order of the last steps of the syn-
thesis (Scheme 5). Thus, acidolysis of tert-butyl ester of
8 was first carried out by treatment with trifluoroacetic
acid in CH2Cl2 and concommitant lactonisation
occurred leading lactone 16 in 80% yield.

Then, reduction of the azido group of 16 by hydrogen-
olysis in the presence of ammonium formate and Pd/C
led to simultaneous isomerisation of the lactone into
the required lactam 15 in 84% yield. In an analogous
manner, the diastereoisomeric diazepanone 18 could
be obtained from the azido derivative 9 through the
intermediate lactone 17. The latter conditions involving
a lactonisation–lactamisation two-step sequence
revealed much more powerful in terms of both yield
and purification as compared to the initial route.

In conclusion, we developed a straightforward route to
two enantiomerically pure polyfunctionalised diazepa-
none scaffolds from easily available LL-serine deriva-
tive and azido epoxide resulting from LL-ascorbic or
DD-isoascorbic acid. The described synthesis relies on
three key reactions which are nucleophilic opening of
the epoxide by the secondary amine of the amino
acid followed by a two-step procedure involving a
lactonisation–lactamisation sequence and affording the
targeted diazepanone in 45% overall yield. The achieve-
ment of 1,4-diazepan-3-one synthesis in good yield and
displaying orthogonally protected highly differentiated
functions and various configurations is of general
interest in the scaffold field. It should now allow
the obtention of a library of liposidomycins analogs.
Current work is in progress towards this goal.
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